Dual Wake-up Low Power Listening for Duty Cycled Wireless Sensor Networks

نویسندگان

  • Jongkeun Na
  • Sangsoon Lim
  • Chong-kwon Kim
چکیده

Energy management is an interesting research area for wireless sensor networks. Relevant dutycycling (or sleep scheduling) algorithm has been actively studied at MAC, routing, and application levels. Low power listening (LPL) MAC is one of effective dutycycling techniques. This paper proposes a novel approach called dual wake-up LPL (DW-LPL). Existing LPL scheme uses a preamble detection method for both broadcast and unicast, thus suffers from severe overhearing problem at unicast transmission. DW-LPL uses a different wake-up method for unicast while using LPL-like method for broadcast; DW-LPL introduces a receiverinitiated method in which a sender waits a signal from receiver to start unicast transmission, which incurs some signaling overhead but supports flexible adaptive listening as well as overhearing removal effect. Through analysis and Mote (Telosb) experiment, we show that DW-LPL provides more energy saving than LPL and our adaptive listening scheme is effective for energy conservation in practical network topologies and traffic patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Tuned-RF Duty-Cycled Wake-Up Receiver with −90 dBm Sensitivity

A novel wake-up receiver for wireless sensor networks is introduced. It operates with a modified medium access protocol (MAC), allowing low-energy consumption and practical latency. The ultra-low-power wake-up receiver operates with enhanced duty-cycled listening. The analysis of energy models of the duty-cycle-based communication is presented. All the WuRx blocks are studied to obey the duty-c...

متن کامل

A JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS

Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...

متن کامل

On the RFID wake-up impulse for multi-hop sensor networks

Communication protocols for wireless sensor networks reduce the energy consumption by duty cycling the node activity and adopting a periodic sleeping scheduling. This approach often results in idle listening and therefore energy dissipated for listening to a channel free from packet transmitted. Duty cycling trades-off energy consumption due to idle listening and high end-to-end delay. Proposed...

متن کامل

X-MAC: A Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks ; CU-CS-1008-06

In this paper we present X-MAC, a low power MAC protocol for wireless sensor networks (WSNs). Standard MAC protocols developed for duty-cycled WSNs such as BMAC, which is the default MAC protocol for TinyOS, employ an extended preamble and preamble sampling. While this “low power listening” approach is simple, asynchronous, and energy-efficient, the long preamble introduces excess latency at ea...

متن کامل

Duty-Cycled PLL for Wireless Sensor Nodes in 65nm CMOS

The design of a Duty-Cycled PLL (DCPLL) capable of burst mode operation is presented. The proposed DCPLL is a moderately-accurate low-power high-frequency synthesizer suitable for use in nodes for Wireless Sensor Networks (WSN) applications. Thanks to a dual loop configuration the PLL’s total frequency error, once in lock, is less than 0.25% from 300 MHz to 1.2 GHz. It employs a fast start-up D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008